TM-1686 # Accelerator Magnet Designs Using Superconducting Magnetic Shields ' B. C. Brown Fermi National Accelerator Laboratory P.O. Box 500 Batavia, Illinois 60510 October 1990 ^{*} Presented at the 1990 Applied Superconductivity Conference, Snowmass, Colorado, September 24-28, 1990. # ACCELERATOR MAGNET DESIGNS USING SUPERCONDUCTING MAGNETIC SHIELDS B. C. Brown Fermi National Accelerator Laboratory * P.O. Box 500 Batavia, Illinois 60510 #### Abstract Superconducting dipoles and quadrupoles for existing accelerators have a coil surrounded by an iron shield. The shield limits the fringe field of the magnet while having minimal effect on the field shape and providing a small enhancement of the field strength. Shields using superconducting materials can be thinner and lighter and will not experience the potential of a large de-centering force. Boundary conditions for these materials, material properties, mechanical force considerations, cryostat considerations and some possible geometrical configurations for superconducting shields will be described. # 1 Multipoles with Cylindrical Shields The magnetic field produced by a multipole coil within a cylindrical iron shield is subject to analysis by image methods. The fields and resulting forces are analyzed by Halback [1]. The resulting formulas will apply to the case with a diamagnetic shield by an appropriate change of sign. For dipoles, we find that the field is given by $$B = B_o(1 \pm (\frac{a}{R})^2) \tag{1}$$ where R is the shield radius and a the coil effective radius and the plus sign applies for a perfect ferromagnetic shield. Other approaches to shielding design can be found [2] [3] When a superconducting coil is surrounded by an iron shell there is a well known de-centering force between the coil and the shell. This is of considerable significance in design of cryostat systems since the allowance for an imperfect alignment requires the cryostat to withstand the forces generated. If the iron shield is to be held at a different temperature than the coil, the ability to reduce the conduction between the two parts will be limited by the requirement to support de-centering forces. Since the image current is in the reverse direction for the diamagnetic shield, an off-center coil will experience a restoring force rather than a decentering one. The magnitude of these forces was calculated by Halbach [1] to be $$f = \frac{1}{2}\pi\mu(N+1)H^2\rho \,\delta z \tag{2}$$ for the case in which iron saturation effects are ignored. This force is large in proportion to the enhancement sought from the iron shield. ## 2 Superconducting Materials In Table 1 we list some of the materials which might be considered for magnetic shielding applications. We note that successful Table 1: Some Superconducting Materials | Material | Temperature | Useful Field | | |--------------|-------------|--------------|--| | Niobium | 4 <i>K</i> | 0.2 Т | | | NbTi | 4 K | 5 T | | | Nb_3Sn | 10 <i>K</i> | 5 T | | | High Temp SC | 20 - 70K | 0.2 T | | magnets have been constructed with NbTi but that the cost of this material is fairly high so its use would be restricted to applications in which this design provides some essential new feature. Pure Niobium has the advantages associated with Type I superconductors: no flux penetration at all. This has been utilized in shielding tubes in the past but is limited to relatively low fields even at helium temperatures. Nb3Sn has been difficult to use in magnets but as a shield, its mechanical limitations may be more easily overcome. In addition, it may be possible to use it at a temperature near 10 degrees which could be suitable for the thermal shield layer in a low temperature cryostat. The possibilities for utilizing the new high temperature superconductors is more speculative but more exciting. It seems clear, for materials currently under development, that their magnetic shielding properties at nitrogen temperatures are not interesting. However, it is quite possible that interesting shielding properties could be obtained at temperatures of 20 to 30 degrees where intermediate temperature thermal shields are very favorably designed into existing large magnets [4]. As developments continue for high temperature superconductors, other alternatives may be developed. Consider a circular cylinder of superconductor of an appropriate length and radius. The current required to shield a given magnetic field can be calculated by assuming that a current density J_c is carried within a thickness w near the surface of a superconductor at which the magnetic field parallel to the surface is B. Utilizing the usual Ampere's Law integral we find $$w = \frac{B}{\mu_0 J_c} \tag{3}$$ For NbTi and Nb_3Sn we will take a value of $2000A/mm^2$ (2 × $10^9A/m^2$) while for the high temperature materials we will assume $100A/mm^2(10^8A/m^2)$. Thus a shield using Nb_3Sn for 3 T would require 1.2 mm of material while it would require 1.6 mm of High Temperature material for shielding 0.2 T. Since the current carrying capacity of superconductor improves when it is shielded, the outer portion of the shield layer may be more effective, making this estimate conservative[3]. ^{*}Operated by the Universities Research Association under contract with the U.S. Department of Energy Table 2: Some Fields and Radii in the Effective Radius Approximation | B coil | a | R(2 T) | R(0.2 T) | |---------|------|--------|----------| | Dipoles | | | | | 6 T | 4 cm | 7 cm | 22 cm | | 8 T | 4 cm | 8 cm | 25 cm | | 13 T | 4 cm | 10 cm | 32 cm | | Quads | | | | | 6 T | 4 cm | 5.7 cm | 12.4 cm | | 8 T | 4 cm | 6.3 cm | 13.7 cm | | 13 T | 4 cm | 7.5 cm | 16.1 cm | # 3 Magnet Configurations and Fields For a multipole magnet of symmetry 2N (N=1 is a dipole) we know that as we move outward away from the coil the field is completely dominated by the lowest order harmonic component. In designing a shield, we will be satisfied with such single term expansions (The problem is to select a useful effective radius.) The peak field at radius R is given by the formula $$B = B_o(\frac{a}{R})^{N+1} \tag{4}$$ where B_n is not very different than the field at the effective radius a. In Table 2 we illustrate a few interesting cases. With these numbers in mind, we suggest three applications in which a superconducting shield may offer important advantages over an iron shield. - 1. For very high field accelerator dipoles, one can avoid the decentering force, the weight (which impacts the cryostat design) and non-uniform field of a saturated iron shield by using a superconducting shell. The field enhancement from an iron shield will be a relatively smaller advantage than for magnets which provide 4-6 Tesla fields (see section on dipoles). - 2. For quadrupoles in a p-p colliding beam collision region, as the transverse separation between orbits decreases we must choose between quadrupoles which are nearby but independent and a shared quadrupole (large aperture). The iron required for shielding a quadrupole pair which produces 2 T at the iron surface is likely to have a thickness of several cm whereas we have suggested above that a few mm of Nb₃Sn might provide the same shielding. Thus, one may have quadrupoles with equal strength and aperture but smaller orbit to orbit separation using superconducting shields. For quadrupoles, one cannot achieve a substantial field enhancement with iron (or decrement with superconductor) because the field naturally falls with radius more quickly than for dipoles. - 3. If a colliding detector is to be based upon a dipole field, one will need a compensating dipole within the straight section to cancel the dipole bending of the detector. Typical large aperture experiments will wish to exploit all of the available angular regions to look for particles. We illustrate this with Fig 1. The angular region φ blocked by the compensating dipoles is determined by their overall radius R and distance #### Collider Detector with Dipole Analysis Magnet $$\delta = \theta L = (\theta/\phi) R$$ Figure 1: Compensation Dipoles for a Collider Detector with Dipole Analysis Magnet illustrating the advantages of small overall magnet radius achieved with a Superconducting Shield from the interaction point L giving $\phi=R/L$. Assuming that the analysis dipole must operate at fields from zero to its maximum, the beam pipe must be clear for a radial distance δ determined by the distance L and the bend strength $\int Bdl$ of the analysis magnet. Maintaining a small δ allows the experiment to examine particle decays very close to the interaction point. Reducing the overall radius R of the compensating dipoles will allow one to reduce the required beam pipe size in the detector. The cost of providing a superconducting shield at 4K may be a very desirable trade-off in this situation. # 4 Effects of Shields on the Maximum Field in Superconducting Dipole Magnets As discussed above, a superconducting magnet design will realize an enhanced field at a fixed current by adding an iron shield. At the maximum current for which the iron is unsaturated, it will add about a Tesla to the central field of a dipole. A perfect superconducting shield of the same radius will result in a similar decrement to the field. However, ignoring the costs of power supply changes (small), the proper comparison of such designs is at the point for each design for which the coil reaches its current carrying limits. A suitable way to explore this is shown in Fig 2 in which we show the body field (solid diagonals) and maximum field at the coil (dashed diagonals) for three magnet options. Each has a coil with inner radius of 3.5 cm. When required, the shield has an inner radius of 9.624 cm. The three cases include an iron shield (assumed unsaturated), no shield, and a superconducting shield. The superconducting cable properties at either 1.8K or 4.35K are shown by the characteristic lines which cross the magnet load lines. These are calculated with a program based on the model of Green[5]. The coil and shield designs are from a high # COMPARISON OF IRON AND SUPERCONDUCTING DIPOLE SHIELDS Load Lines and Conductor Characteristic Figure 2: Operating Limits for Superconducting Coils. Magnet Body Field Load Lines (solid) and Load Lines for Coil High Field Points (dashed lines) and NbTi Superconductor Characteristics at 4.35K and 1.8K are shown for three coil/shield combinations Table 3: Comparison of Iron and Superconducting Shields for Dipoles | | Iron
Shield | Lo Field
Shield | SC Shield
(Hi Field) | |--|---------------------------------------|---|--| | Shield Radius Cable limit in Coil (4.35 K) Resulting Field at Coil Corresponding Body Field Relative Field Strengths | 9.6 cm
6.30 kA
7.64 T
7.13 T | large
7.23 kA
7.18 T
6.58 T
0.926 T | 9.6 cm
8.50 kA
6.51 T
5.81 T
0.826 | | Cable limit in Coil (1.8K) Resulting Field at Coil Corresponding Body Field Relative Field Strengths | 8.36 kA
10.14 T
9.46 T | 9.63 kA
9.56 T
8.76 T
0.922 | 11.39 kA
8.76 T
7.82 T
0.818 | | Rel. Strength(Constant I) | 1 | 0.818 | 0.634 | field dipole design[6]. Some numerical results corresponding to Fig 2 are shown in Table 3. These results are obtained from an analytic calculation of the fields, assuming unsaturated iron (thus the straight load lines). The magnetic field enhancement from the iron at constant current is the large factor expected (in fact, very large, since the shield radius is small enough that even at the 4.35 K operation, the iron shield will be saturated. The extrapolated enhancement for 1.8 K operation is very optimistic). However, the calculated enhancement when taking into account the conductor properties, is only about 8% when compared to a shield at large radius and only 18% when compared to a high field shield (only required when seeking minimum radial aperture). A superconducting shield at a radius corresponding to the outside iron radius will have a load line with slope slightly shallower than the "no shield" case shown. A calculation which accounts for the saturated iron will show somewhat less enhancement at $4.35\,K$ and much less enhancement at $1.8\,K$. We note that the superconducting shields will not result in any change in field shape (harmonic content) due to saturation, unlike saturated iron shields. In Fig 3 we illustrate the sort of geometrical differences which a superconducting shield permits for design of an accelerator dipole. The dipole with iron shield which is illustrated is typical of the SSC generation of low heat leak, cold iron superconducting dipoles. Using a high field shield permits a very compact design. Superconducting shells which shield 1 or 2T could be used in a design with this geometry. Such a geometry would provide adequate space for the coil package to be cooled to 2K with the shell held between 4K and 10K if that was desired for a very low temperature design. The low field design illustrates the use of 0.2T superconducting shells. It is nearly as large is the designs with Iron shields, but the weight and magnetic properties will have the differences outlined above. ## 5 Cryostat Issues Since the weight involved will be 4 to 10 times less for superconducting shields than in comparable cases with iron shields, and since there will be no de-centering forces, the cryostat can be reoptimized to utilize this as an advantage. The design shown for a low field shield allows a large radial distance, such that the cryostat design can be completely different than the folded posts which are needed to support the large iron mass. It may be possible to take advantage of the lower weights and large radial space to create designs in which the heat path can include long longitudinal distances as well as long radial ones. The much smaller mass of cold (helium temperature) materials may prove to be an very important operational advantage of superconducting shields. # 6 Superconductor Issues Several issues which might be of concern need to be addressed for this system and should be examined in any proposed test. First, unlike Type I materials, Type II superconductors can allow flux penetration. This design presumes that one can avoid serious flux leakage by a suitable choice of materials and a sufficiently conservative shield thickness. Beyond this quasi-static description, one also experiences flux creep phenomena in Type II superconductors. These effects have proved to be significant in accelerator dipoles [7][8]. The flux creep effects on the dominant field are not important (not yet observed) whereas the effects of flux creep on field distortions (sextupole and decapole errors) have been significant. However, for a large radius shield, any field shape effects of flux creep will be very small. Superconducting shields are also subject to the flux jump instability[9]. This consideration will likely demand that the shield be constructed with a series of layers whose thickness is prescribed by the heat conduction and capacity of the superconductor and the host metal in which it is embedded. Figure 3: Comparison of Cross Sections for Dipoles with Iron shields and with high or low field Superconducting Shields. The coils shown have 4 cm diameter and the larger vacuum shells have a 61 cm diameter. #### 7 Conclusions The possibility of a superconducting shield for accelerator dipole and quadrupole magnets has been explored. We find that the decentering instability associated with iron shields is avoided by the strong diamagnetic shield. In addition, the shield can be much thinner, occupying less radial space in the cryostat. We recognize that by avoiding the weight and decentering forces of the iron shield, we can re-optimize the cryostat design and substantially reduce the mass which must be cooled to belium temperatures. Promising applications in which these advantages are important have been identified: - 1. p-p Collider Interaction Region Quadrupoles - 2. Corrector Dipoles for Collider Detectors - 3. High Field Accelerator Dipoles Perhaps this will prove to be a practical use for the new high temperature superconductors. # 8 Acknowledgements I would like to thank Paul Mantsch and Helen Edwards for discussions and encouragement with this work. I thank Peter Mazur for the critical discussions and essential corrections which enabled this work to proceed. Alan Riddiford and Moyses Kuchnir provided assistance with calculations. # References - [1] K. Halbach. Fields and first order perturbation effects in twodimensional conductor dominated magnets. Nuclear Instruments and Methods, 78:185, 1970. - [2] K. W. Rigby. Design of magnets inside cylindrical superconducting shields. Rev. Sci. Instrum., 59:156, 1988. - [3] R. V. Kalashnikov, N. B. Trusov, and A. N. Zvenigorodskaya. Magnetic shielding of superconductors on the basis of niobiumtin compounds. *Elektrotekhnika*, 55:49, 1984. - [4] SSC Central Design Group. Conceptual design of the superconducting super collider. Lawrence Berkeley Laboratory, One Cyclotron Road, Berkeley, CA 94720, March 1986, SSC-SR-2020. - [5] Michael A. Green. Calculating the j_c, b, t surface for niobium titanium using a reduced-state model. *IEEE Trans. on Mag.*, MAG-25:2119, 1989. - [6] Fady Hafoush, Mike Harrison, Jim Kerby, Karl Koepke, Paul Mantsch, Tom Nicol, Alan Riddiford, and Jay Theilacker. The design of a large aperture high field dipole. Fermilab TM-1641, 1989. - [7] D. A. Herrup, M. J. Syphers, D. E. Johnson, R. P. Johnson, A. V. Tollestrup, R. W. Hanft, B. C. Brown, M. J. Lamm, M. Kuchnir, and A. D. McInturff. Time variations of fields in superconducting magnets and their effects on accelerators. *IEEE Trans. on Mag.*, MAG-25:1643, 1989. - [8] R. W. Hanft B. C. Brown, D. A. Herrup, M. J. Lamm, A. D. McInturff, and M. J. Syphers. Studies of the time dependence of fields in tevatron superconducting dipole magnets. *IEEE Trans. on Mag.*, MAG-25:1647, 1989. - [9] S. Sato, M. Ikeuchi, A. Iwata, Y. Saji, and S. Kado. The magnetic field screening with ab-ti. In Proceeding of the Ninth International Cryogenic Engineering Conference, 11-14 May 1982, Kobe, Japan, page 115. Butterworth, Guildford, Surrey, England, 1982.